Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38643744

ABSTRACT

Florida manatees (Trichechus manatus latirostris) are protected as a threatened species, and data are lacking regarding their reproductive physiology. This study aimed to (1) quantify plasma steroid hormones in Florida manatees from two field sites, Crystal River and Indian River Lagoon, at different gestational stages and to (2) identify individual lipids associated with pregnancy status. Ultra-high performance liquid chromatography-tandem mass spectrometric analysis was used to measure plasma steroid hormones and lipids. Pregnant female manatees were morphometrically distinct from male and non-pregnant female manatees, characterized by larger body weight and maximal girth. Progesterone concentrations in manatees were also elevated during early gestation versus late gestation. Cholesterol, an important metabolic lipid, and precursor for reproductive steroids, was not different between groups. Mass spectrometry quantified 949 lipids. Plasma concentrations of glycerophospholipids, glycerolipids, sphingolipids, acylcarnitines, and cholesteryl esters were associated with pregnancy status in the Florida manatee. Most of the lipid species associated with pregnancy were triacylglycerides, phosphatidylethanolamines, and ether-linked phosphatidylethanolamines, which may serve as energy sources for fetal development. This research contributes to improving knowledge of manatee reproductive physiology by providing data on plasma steroid hormones relative to reproductive status and by identifying plasma lipids that may be important for pregnancy. Elucidation of lipid species directly associated with pregnancy has the potential to serve as a diagnostic approach to identify pregnant individuals in fresh and archived samples. These biochemical and morphometric indicators of reproductive status advance the understanding of manatee physiology.

2.
Gen Comp Endocrinol ; 337: 114250, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36858274

ABSTRACT

Florida manatees (Trichechus manatus latirostris), a federally protected species, are classified as threatened due to anthropogenic stressors. Manatees inhabit sites that are impacted by human activities that can negatively affect stress physiology and metabolism. Samples collected from healthy manatees (pregnant females, non-pregnant females, and males) at Crystal River and Indian River Lagoon in Florida, were assessed for adrenal hormones, proteins, glucose, and lipid content in plasma. The objective was to determine if healthy manatees sampled between 2010-2014 from the Indian River Lagoon exhibited evidence of stress compared to healthy manatees sampled between 2012-2019 from Crystal River. Plasma cortisol concentrations were not different in male and non-pregnant female manatees between sites but were elevated in pregnant manatees. Plasma aldosterone concentrations were elevated in Indian River Lagoon manatees relative to those at Crystal River, possibly due to differences in salinity and available freshwater between the two environments. Site differences were noted for plasma protein and glucose concentrations in manatees; additionally, differences between the sexes were also observed in glucose concentrations. Fifteen lipid subclasses, including oxidized lysophosphatidylcholines, oxidized phosphatidylcholines, oxidized triacylglycerols, were elevated in manatees from the Indian River Lagoon relative to manatees from Crystal River. Evidence of a stress response in healthy Indian River Lagoon manatees was lacking compared to Crystal River manatees. Differences in metabolites related to energy (glucose, protein, and lipids) may be related to site-specific variables, such as salinity and food availability/quality. This study generates novel data on plasma lipid profiles and provides cortisol, aldosterone, glucose, and protein values from healthy Florida manatees in two disparate sites that can be referenced in future studies. These data contribute to an improved understanding of manatee physiology to better inform population management.


Subject(s)
Trichechus manatus , Animals , Humans , Male , Female , Trichechus manatus/physiology , Hydrocortisone , Aldosterone , Trichechus , Ecosystem , Lipids
3.
Aquat Toxicol ; 252: 106298, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162204

ABSTRACT

Red tide events, caused by a toxin producing dinoflagellate, Karenia brevis, occur annually in Florida and Texas. These events lead to health risks for both humans and wildlife that utilize coastal environments. Brevetoxins, potent lipophilic neurotoxins produced by K. brevis, modulate immune responses in laboratory studies with model organisms and in the natural environment in both humans and wildlife. Studies show that brevetoxins activate immune cells, stimulate production of gamma-globulins, cytokines, and neutrophils, modulate lysozyme activity, induce apoptosis, and modulate lymphocyte proliferation in marine species. The objective of this review was to summarize brevetoxin-induced immunotoxicity in marine animals based on available peer-reviewed literature about K. brevis blooms and associated health concerns and propose putative toxicity pathways. This review identifies knowledge gaps within current brevetoxin induced immunotoxicity research, including assessing the long-term impacts of brevetoxin exposure, elucidating the mechanistic linkages between brevetoxins and immune cells, and evaluating repeated and chronic versus acute brevetoxin exposure implications on overall organismal health. The putative immunotoxicity pathways based on evidence from brevetoxin-exposure in marine fauna described in this review represent a useful tool and resource for researchers, wildlife managers, and policy makers. This review and proposed putative immunotoxicity pathways will inform decisions regarding the risks of algal blooms, as it pertains to marine animal health.


Subject(s)
Dinoflagellida , Water Pollutants, Chemical , Humans , Animals , Neurotoxins/toxicity , Muramidase/metabolism , Water Pollutants, Chemical/toxicity , Marine Toxins/toxicity , Marine Toxins/metabolism , Dinoflagellida/metabolism , Cytokines/metabolism , gamma-Globulins/metabolism
4.
J Endocrinol ; 227(3): 129-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26487675

ABSTRACT

Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.


Subject(s)
Body Weight/drug effects , Bone Density/drug effects , Genetic Therapy/methods , Hypothalamus/drug effects , Leptin/therapeutic use , Animals , Female , Insulin-Like Growth Factor I/metabolism , Leptin/blood , Leptin/pharmacology , Obesity/drug therapy , Obesity/genetics , Obesity/therapy , Rats , Rats, Sprague-Dawley , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...